首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群规则挖掘算法的洪灾风险评价模型
引用本文:王兆礼,陈晓宏,赖成光,赵仕威. 基于粒子群规则挖掘算法的洪灾风险评价模型[J]. 系统工程理论与实践, 2013, 33(6): 1615-1621. DOI: 10.12011/1000-6788(2013)6-1615
作者姓名:王兆礼  陈晓宏  赖成光  赵仕威
作者单位:1. 华南理工大学 土木与交通学院, 广州 510641;2. 中山大学 水资源与环境研究中心, 广州 510275
基金项目:国家自然科学基金(51209095); 华南理工大学中央高校基本科研业务费专项资金(2009ZM0186); 水资源与水电工程科学国家重点实验室开放研究基金(2010B065)
摘    要:
运用粒子群优化算法(particle swarm optimization, PSO)进行规则挖掘是一个新的研究热点. 提出了一种基于粒子群规则挖掘算法(PSO-Miner)的洪灾风险评价模型. 基于GIS技术利用该模型对北江流域洪灾风险等级进行了评判, 结果表明: PSO-Miner算法是一种无参数评判的智能方法, 具有较强的全局收敛能力和鲁棒性; 所挖掘的If-Then评判规则能更简单和准确地描述各评价指标与风险等级之间的复杂关系; 总体精度比BP神经网络模型的更高, 而且能客观地反映北江流域洪灾风险实际情况; 与GIS技术结合, 便于分析洪灾风险的空间 格局及内在规律, 具有较好的适用性.

关 键 词:洪灾  风险评价  粒子群优化算法  规则挖掘  地理信息系统  
收稿时间:2011-01-05

Flood risk assessment model based on particle swarm optimization rule mining algorithm
WANG Zhao-li , CHEN Xiao-hong , LAI Cheng-guang , ZHAO Shi-wei. Flood risk assessment model based on particle swarm optimization rule mining algorithm[J]. Systems Engineering —Theory & Practice, 2013, 33(6): 1615-1621. DOI: 10.12011/1000-6788(2013)6-1615
Authors:WANG Zhao-li    CHEN Xiao-hong    LAI Cheng-guang    ZHAO Shi-wei
Affiliation:1. School of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510641, China;2. Center for Water Resources and Environment Research, Sun Yat-sen University, Guangzhou 510275, China
Abstract:
Particle swarm optimization (PSO) as a novel intelligent optimization algorithm has been used successfully in many fields, but its application to flood hazard risk assessment is a new research topic. This paper introduces the theory and flow of application of particle swarm optimization rule mining (PSO-Miner) algorithm to flood damage risk assessment. This paper selected Beijiang River Basin, China, as study area for flood damage risk assessment based on PSO-Miner algorithm and BPANN method. The results of a case study indicate that the advantages of PSO-Miner algorithm can be summarized as follows: It does not assume an implicit assumption for processing dataset and has strong robustness; it can mine very simple assessment rules; it can have a better performance than BPANN model. So the PSO-Miner algorithm provides a new approach for flood risk assessment.
Keywords:flood damage  risk assessment  particle swarm optimization  rule mining  geographical information system
本文献已被 万方数据 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号