二元关系半群P_Γ(Λ×Λ)的一类左单位的构造 |
| |
摘 要: | 设Λ是任意的非空集合,Γ是集合Λ上的半格,f:Λ→Γ是任意集值变换.通过Λ上的极值变换f定义集合Λ上由半格Γ确定的二元关系,而P_Γ(Λ×Λ)是集合Λ上由半格Γ确定的所有二元关系构成的集合,并且P_Γ(Λ×Λ)在二元关系的乘积运算构成半群.利用半群P_Γ(Λ×Λ)左单位已有的结论,以及二元关系之间的包含关系,可以获得P_Γ(Λ×Λ)的一类左单位的重要特征,从而可以构造出半群P_Γ(Λ×Λ)的一类左单位.
|
本文献已被 CNKI 等数据库收录! |
|