首页 | 本学科首页   官方微博 | 高级检索  
     

图的度和、连通度和控制圈
作者姓名:孙志人()  田丰()  卫兵()
作者单位:南京师范大学数学系!南京210097(孙志人),中国科学院系统科学研究所!北京100080(田丰,卫兵)
基金项目:国家自然科学基金!(批准号 :196 710 4 4 ),国家教委基金资助项目
摘    要:
令G是一个n阶图.设C是G中的一个圈,如果G-V(C)是空图,那么称C是控制圈.令δ,κ和α分别表示图G的最小度、连通度和独立数.用σk表示G中任意k个独立点的度和的最小值.Bauer等人[1]证明了:设G是n阶2连通图.若σ3≥n κ,则G是Hamilton图.本文证明了:定理 设G是n阶3连通图.若σ4≥n 2κ,则G包含一个最长圈C,使得C是一个控制圈.界n 2κ是最好可能的.我们能构造一类图,它们满足定理假设,但不是Hamilton的.根据定理,我们有如下结论:推论1 设G是n阶3连通图.若σ4≥n 2κ并且δ≥α,则G是Hami…

本文献已被 CNKI 等数据库收录!
点击此处可从《科学通报》浏览原始摘要信息
点击此处可从《科学通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号