摘 要: | 令G是一个n阶图.设C是G中的一个圈,如果G-V(C)是空图,那么称C是控制圈.令δ,κ和α分别表示图G的最小度、连通度和独立数.用σk表示G中任意k个独立点的度和的最小值.Bauer等人[1]证明了:设G是n阶2连通图.若σ3≥n κ,则G是Hamilton图.本文证明了:定理 设G是n阶3连通图.若σ4≥n 2κ,则G包含一个最长圈C,使得C是一个控制圈.界n 2κ是最好可能的.我们能构造一类图,它们满足定理假设,但不是Hamilton的.根据定理,我们有如下结论:推论1 设G是n阶3连通图.若σ4≥n 2κ并且δ≥α,则G是Hami…
|