首页 | 本学科首页   官方微博 | 高级检索  
     

基于关联向量机回归的故障预测算法
引用本文:张磊,李行善,于劲松,万九卿. 基于关联向量机回归的故障预测算法[J]. 系统工程与电子技术, 2010, 32(7): 1540-1543. DOI: 10.3969/j.issn.1001506X.2010.07.044
作者姓名:张磊  李行善  于劲松  万九卿
作者单位:(北京航空航天大学自动化科学与电气工程学院, 北京 100191)
基金项目:总装"十一五"预研基金 
摘    要:
针对一类故障预测问题提出了一种基于关联向量机(relevance vector machine, RVM)回归的故障预测算法。算法首先采用关联向量机模型对对象历史数据中隐含的故障演化信息进行学习,然后将所获取的关联向量机模型用于对象故障未来变化趋势的预测。预测过程采用多步时间序列预测中的递推计算的思想,并且将每一步预测的不确定性作为下一次预测迭代的输入要素加以充分的考虑。迭代过程中的一些关键量的获取采用了蒙特卡罗采样计算的思想,避免了对关联向量机核函数选取的限制。算法预测输出采用对象系统剩余寿命的随机分布形式,相对于传统预测算法的确定值形式的输出更加符合实际。将所提算法与传统算法进行比较,仿真实验结果证明所提算法要优于传统故障预测算法。

关 键 词:故障预测  关联向量机  时间序列预测  蒙特·卡罗采样  剩余寿命

Fault prognostic algorithm based on relevance vector machine regression
ZHANG Lei,LI Xing-shan,YU Jin-song,WAN Jiu-qing. Fault prognostic algorithm based on relevance vector machine regression[J]. System Engineering and Electronics, 2010, 32(7): 1540-1543. DOI: 10.3969/j.issn.1001506X.2010.07.044
Authors:ZHANG Lei  LI Xing-shan  YU Jin-song  WAN Jiu-qing
Affiliation:(Dept. of Automation Science and Electrical Engineering, Beihang Univ., Beijing 100191, China)
Abstract:
To solve a kind of fault prognostic problem, an algorithm based on relevance vector machine (RVM) regression is presented. The algorithm employs a relevance vector machine to learn the hidden information about system fault evolution from historical datasets. Then it uses the learned models to predict the future trend of system fault. The algorithm adopts the ideas from recursive calculation process of time series multi step ahead prediction. Besides, it fully takes into account the prediction uncertainty transfer problem of the recursive computation process. Monte Carlo sampling approach is introduced into above recursive prediction process, which avoids the limitation of choosing kernel functions of relevance vector machine. The prediction outputs of the algorithm use the form of random distributions of targeted system remaining useful lifetime, which is more realistic as opposed to the form of certainty values traditional algorithms used. Compared with several traditional fault prognostic algorithms, the si
Keywords:fault prognostics  relevance vector machine  time series prediction  Monte Carlo sampling  remaining useful lifetime
本文献已被 万方数据 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号