首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM算法的乳腺图像钙化点检测方法
引用本文:单净,徐晶,张秋杰. 基于SVM算法的乳腺图像钙化点检测方法[J]. 科技导报(北京), 2009, 27(1)
作者姓名:单净  徐晶  张秋杰
作者单位:黑龙江科技学院数力系,哈尔滨,150027  
摘    要:
提出了一种基于支持向量机(ISVM)算法的钙化点检测方法.通过对乳腺图像进行预处理并提取可能含有微钙化点的感兴趣区域(ROI),对样本ROI进行小波变换确定优化参数,利用SVM检测微钙化点.试验中研究了SVM参数的选取对分类效果的影响,并利用ROC评估准则对SVM的检测效果进行评估.结果表明,SVM在微钙化点检测中是有效的,解决了目前微钙化点检测中普遍存在的假阳性率高、效率低的问题.

关 键 词:支持向量机  乳腺图像  钙化点检测  ROC评估准则

Detection of Calcifications in Breast Based on SVM
SHAN Jing,XU Jing,ZHANG Qiujie. Detection of Calcifications in Breast Based on SVM[J]. Science & Technology Review, 2009, 27(1)
Authors:SHAN Jing  XU Jing  ZHANG Qiujie
Affiliation:SHAN Jing,XU Jing,ZHANG Qiujie Department of Mathematics , Mechanics,Heilongjiang Institute of Science , Technology,Harbin 150027,China
Abstract:
An improved Support Vector Machine (SVM) for the detection of calcifications in digital mammograms is proposed,which consists of preprocessing and extracting the Region of Interest (ROI) as the possible microcalcification,obtaining characteristic vectors by wavelet transform,detecting microcalcification in all ROIs with SVM,examining the parameters of the impact of SVM,and using the assessment criteria of ROC to assess the test results of SVM.Experimental results show that SVM is effective in the detection ...
Keywords:support vector machine  mammogram  microcalcification detection  ROC  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号