首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的电力系统短期负荷预测
引用本文:熊永胜. 基于BP神经网络的电力系统短期负荷预测[J]. 成都大学学报(自然科学版), 2012, 31(2): 167-169. DOI: 10.3969/j.issn.1004-5422.2012.02.019
作者姓名:熊永胜
作者单位:四川理工学院自动化与电子信息学院,四川自贡,643000
摘    要:
电力系统短期负荷预测的准确性对电力系统的实时运行调度至关重要.采用BP神经网络对电力系统负荷短期预测研究,根据影响电力系统的负荷因素如温度、天气等确定模型构成,同时利用遗传算法对BP神经网络进行优化.实例表明,利用遗传算法优化的BP神经网络在电力系统短期负荷预测中是有效的.

关 键 词:负荷预测  神经网络  遗传算法

Short-term Load Forecasting of Power System Based on BP Neural Network
XIONG Yongsheng. Short-term Load Forecasting of Power System Based on BP Neural Network[J]. Journal of Chengdu University (Natural Science), 2012, 31(2): 167-169. DOI: 10.3969/j.issn.1004-5422.2012.02.019
Authors:XIONG Yongsheng
Affiliation:XIONG Yongsheng (School of Automation and Electric Information, Sichuan University of Science and Engineering, Zigeng 643000, China)
Abstract:
The accuracy of short-tenn electric load forecasting is very important for real-time operation in the power system. BP neural network was used to study short-term electric load in this paper. Structure of the model was detemained according to the power system load factors of temperature and weather. Genetic algorithm was used to optimize the BP neural network. The examples show that genetic algorithm optimized by BP neural network is effective in the short-term load forecasting of power system.
Keywords:load forecasting  neural network  genetic algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号