摘 要: | 针对蚁群算法应用于移动机器人路径规划时存在易于陷入局部最优解、收敛速度慢的问题,提出了一种适用于静态障碍环境下基于改进蚁群算法的移动机器人路径规划方法。该方法改进了节点间的状态转移规则,增加了得到最优路径的概率;自适应调整启发函数,提高了算法的搜索效率;基于狼群法则对信息素进行更新,有效避免了算法陷入局部最优解;动态调整了衰减系数,在后期增加了蚂蚁对最优路径的选择概率,加快了算法的收敛速度。仿真实验表明,与其他算法在相同环境下比较,该改进算法在路径规划结果相同的情况下具有较快的收敛速度;且改进算法在不同复杂程度环境中均得到了最优路径,也表明了该算法的有效性和可靠性。该算法具有良好的寻优能力,可以适用于不同复杂环境中的移动机器人路径规划。
|