首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进多孔算法的时间序列预测
引用本文:丁宁,周新志. 基于改进多孔算法的时间序列预测[J]. 系统仿真学报, 2007, 19(17): 4082-4085
作者姓名:丁宁  周新志
作者单位:四川大学,电子信息学院,四川,成都,610065
摘    要:针对小波分析技术存在的边界问题,提出一种改进的多孔算法。使用该算法得到的系数序列,在具备时移不变性的同时,消除了右侧边界存在数据畸变的现象,使小波分析技术结合神经网络等传统预测模型的方法应用于单变量时间序列预测任务具备可行性。为进一步提高预测精度,引入了神经网络集成技术以改善网络泛化能力。实验表明,这种组合预测模型预测效果与稳定性优于传统预测模型。

关 键 词:单变量时间序列预测  小波分析  改进的多孔算法  边界问题  神经网络集成
文章编号:1004-731X(2007)17-4082-04
收稿时间:2006-07-07
修稿时间:2006-12-11

Time Series Forecasting Based on Improved (A) Trous Algorithm
DING Ning,ZHOU Xin-zhi. Time Series Forecasting Based on Improved (A) Trous Algorithm[J]. Journal of System Simulation, 2007, 19(17): 4082-4085
Authors:DING Ning  ZHOU Xin-zhi
Affiliation:School of Electronic Engineering and Information, Sichuan University, Chengdu 610065, China
Abstract:Aiming at the boundary problem of wavelets transforms, an improved A trous algorithm was proposed. The coefficient sequences decomposed by this novel method possessed time-invariant capability and eliminated the data distortion phenomenon around right boundary, which made it feasible that the traditional forecasting models such as Neural Networks combining with wavelet transforms could apply to the uni-variant time series forecasting task. In order to improve the network generalization ability, Neural Network Ensembles was introduced into this hybrid model. Experiments result stipulate that the forecasting performance and stability of the hybrid forecasting model is superior to the traditional forecasting model.
Keywords:uni-variant time series forecasting   wavelets transforms   improved A trous algorithm   boundary problem   neural networks ensembles
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号