首页 | 本学科首页   官方微博 | 高级检索  
     

基于高阶交叠组稀疏正则项的图像恢复方法
引用本文:陈育群,陈颖频,林凡,王灵芝. 基于高阶交叠组稀疏正则项的图像恢复方法[J]. 科学技术与工程, 2020, 20(33): 13747-13756
作者姓名:陈育群  陈颖频  林凡  王灵芝
作者单位:闽南师范大学物理与信息工程学院,漳州363000;闽南师范大学物理与信息工程学院,漳州363000;闽南师范大学物理与信息工程学院,漳州363000;闽南师范大学物理与信息工程学院,漳州363000
基金项目:福建省教育厅中青年教师教育科研项目
摘    要:
为进一步提高交叠组稀疏全变分模型的图像恢复效果,通过在现有模型的基础上结合图像的二阶梯度信息,增加二阶梯度正则项的方法对交叠组稀疏正则项进行改进,研究了基于高阶交叠组稀疏正则项的模型建立和算法以及在图像恢复中的效果及各参数的影响。结果表明:在一定水平噪声标准差的情况下,应用该方法对图像进行恢复时,基本上均可获得比其他模型更好的恢复效果。可见在交叠组稀疏全变分模型中考虑二阶梯度信息有助于提高图像的恢复性能。

关 键 词:全变分  高阶  交叠组稀疏  正则项  图像恢复
收稿时间:2019-09-24
修稿时间:2020-09-11

Research on Image Restoration Method Based on High-order Overlapping Group Sparse Total Variation
Chen Yuqun. Research on Image Restoration Method Based on High-order Overlapping Group Sparse Total Variation[J]. Science Technology and Engineering, 2020, 20(33): 13747-13756
Authors:Chen Yuqun
Affiliation:School of Physics and Information Engineering, Minnan Normal University
Abstract:
In order to further enhance the image restoration effect of overlapping group sparse total variation, combined with image second-order gradient information, the second-order gradient regular term was used on the model to investigate the model building of high-order overlapping group sparse regular term and the corresponding algorithm and then the effect in image restoration and the parameters. The results show that the model is better than the others in image restoration under certain level of noise standard deviation in most occasions. It is concluded that it is helpful for enhancing the performance of image restoration to use the second-order gradient information in overlapping group sparse total variation.
Keywords:total variation high order overlapping group sparse regular term image restoration
本文献已被 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号