摘 要: | 环境声音识别(Eenvironment Ssound Rrecognition ,ESR)在基于情景感知和辅助技术等领域发挥着重要作用。卷积神经网络(CNN)和循环神经网络(RNN)作为两种最具代表性的特征提取方法,在语音和音乐信号处理方面都取得显著效果,然而二者都存在一定缺点,CNN无法有效提取时间特征,RNN在提取空间特征上也存在明显劣势。为了有效的提取并利用时间特征和空间特征,提出一种新模型,利用时间分布卷积神经网络(CNN)从梅尔频谱图中提取城市环境声音特征,然后应用双向长短时记忆网络(BiLSTM)从CNN输出中获取时间信息,最后在BRNN的输出序列上实施注意力机制,从而关注到与城市环境声音最相关的特征进而做出分类判断,注意力机制既提高了分类准确性,又增强了模型的可解释性。实验结果表明,在Urbansound8K数据集中,该模型可获得80.2%的分类准确率,这优于以前在同一数据集的报告结果
|