首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的CGF学习行为模型研究
引用本文:MENG Xian-quan,薛青,ZHAO Ying-nan,王立国. 基于遗传算法的CGF学习行为模型研究[J]. 系统仿真学报, 2008, 20(16)
作者姓名:MENG Xian-quan  薛青  ZHAO Ying-nan  王立国
作者单位:装甲兵工程学院装备指挥与管理系,北京,100072
基金项目:国家自然科学基金,国家高技术研究发展计划(863计划)
摘    要:通过自学习使计算机生成兵力(CGF)具有决策能力,是机器学习技术应用于军事仿真的一个重要研究方向.运用基于Agent的建模方法和学习分类器系统技术,构建了基于遗传算法的CGF学习行为模型框架,详细论述了该模型学习过程的运行周期,并将记忆功能引入CGF决策模型来加速学习进程.最后,设计了一个可视化验证系统,实验结果表明该模型的有效性和可行性.

关 键 词:遗传算法  计算机生成兵力  学习分类器系统  学习行为建模

Learning Behavioral Model of CGF based on Genetic Algorithms
MENG Xian-quan,XUE Qing,ZHAO Ying-nan,WANG Li-guo. Learning Behavioral Model of CGF based on Genetic Algorithms[J]. Journal of System Simulation, 2008, 20(16)
Authors:MENG Xian-quan  XUE Qing  ZHAO Ying-nan  WANG Li-guo
Abstract:The Computer Generated Force (CGF) possess decision-making skill by self-learning, which is an important research field in applying machine learning technology to military simulation. By applying modeling method based on Agent and learning classifier systems (LCSs) technology, a learning behavioral model framework of CGF was built, and the learning process of the model was discussed. Memory function was introduced into the decision model of CGF, which could improve the speed of learning. A visible validation system was realized, and the results of experiments show that this learning model is available and feasible.
Keywords:Agent
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号