摘 要: | 针对最小均方(least mean square, LMS)算法在低信噪比(signal to noise ratio, SNR)条件下性能较差的问题,提出一种噪声鲁棒变步长LMS(noise robust variable step-size LMS, NRVSLMS)算法。该算法通过结合改进的双sigmoid函数和误差信号自相关函数,在迭代过程中动态调整步长的大小,解决了传统LMS算法中收敛速度、跟踪性能和稳态性能互相矛盾的问题。理论分析和仿真结果表明,与其他变步长算法相比, NRVSLMS算法抗噪声能力强,具有良好的跟踪速度和稳态性能。将该算法应用于正交频分复用(orthogonal frequency division multiplexing, OFDM)水声信道均衡中,与现有LMS类自适应均衡方法相比,基于NRVSLMS算法的信道均衡方法能够显著降低系统误码率(bit error rate, BER)和均方误差(mean square error, MSE)。
|