首页 | 本学科首页   官方微博 | 高级检索  
     

混合方法优化的自适应引力搜索算法
引用本文:娄奥,姚敏立,贾维敏,袁丁. 混合方法优化的自适应引力搜索算法[J]. 系统工程与电子技术, 2020, 42(1): 148-156. DOI: 10.3969/j.issn.1001-506X.2020.01.20
作者姓名:娄奥  姚敏立  贾维敏  袁丁
作者单位:1. 火箭军工程大学作战保障学院, 陕西 西安 7100252. 火箭军工程大学核工程学院, 陕西 西安 710025
基金项目:国家自然科学基金(61179004);国家自然科学基金(61179005)
摘    要:针对引力搜索算法存在的易早熟收敛、易陷入局部最优、搜索精度有待提高等缺陷,提出一种混合方法优化的自适应引力搜索算法(gravitational search algorithm,GSA)。首先利用Sobol序列初始化种群,增强算法全局搜索能力;其次引入Hamming贴进度计算种群成熟度,判断种群是否早熟;然后引入Logistic混沌对种群作混沌搜索,变异已陷入局部最优的粒子位置;最后基于早熟收敛判断因子改进引力系数,并为粒子位置公式添加收缩因子,促使种群加快脱离局部最优。对9个不同类型的基准测试函数做仿真实验,结果表明新算法能有效改善种群的早熟问题,具备更好的寻优性能。

关 键 词:引力搜索算法  低差异序列  贴进度  混沌  
收稿时间:2019-05-27

Adaptive gravitational search algorithm improved by hybrid methods
Ao LOU,Minli YAO,Weimin JIA,Ding YUAN. Adaptive gravitational search algorithm improved by hybrid methods[J]. System Engineering and Electronics, 2020, 42(1): 148-156. DOI: 10.3969/j.issn.1001-506X.2020.01.20
Authors:Ao LOU  Minli YAO  Weimin JIA  Ding YUAN
Affiliation:1. School of Military Operational Support, Rocket Force University of Engineering, Xi'an 710025, China2. School of Nuclear Engineering, Rocket Force University of Engineering, Xi'an 710025, China
Abstract:In order to overcome the shortcomings of premature convergence, trapping in local optimum easily and lower search accuracy of gravitational search algorithm (GSA), an adaptive GSA improved by hybrid methods is proposed. Firstly, sobol sequence is used to initialize the population and enhance the global search ability. Secondly, hamming nearness degree is introduced to calculate the population maturity and judge whether the population is premature. Thirdly, logistic chaos is introduced to search the population chaotically and update the particle which has fallen into the local optimum. Finally, based on the precocious convergence judgment factor, the gravitational coefficient is improved, and the shrinkage factor is added to the particle position formula to accelerate the population departure from the local optimum. The simulation results of nine different types of benchmark functions show that the new algorithm can effectively improve the premature convergence problem and has better optimization performance.
Keywords:gravitational search algorithm (GSA)  low-discrepancy sequence  nearness degree  chaos  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号