首页 | 本学科首页   官方微博 | 高级检索  
     

窄间隙旋转电弧熔化极活性气体保护焊视觉焊缝偏差检测
引用本文:黎文航,高凯,王加友,何金桥. 窄间隙旋转电弧熔化极活性气体保护焊视觉焊缝偏差检测[J]. 上海交通大学学报, 2015, 49(3): 353-356
作者姓名:黎文航  高凯  王加友  何金桥
作者单位:(1. 江苏科技大学 材料科学与工程学院,江苏 镇江 212003;2. 江苏现代造船技术有限公司,江苏 镇江 212003)
基金项目:国家自然科学基金项目(51005107,51475218),江苏省自然科学基金项目(BK2011509),江苏省“青蓝工程”科技创新团队、优秀青年骨干教师项目,江苏高校优势学科建设工程项目资助
摘    要:摘要: 针对旋转电弧窄间隙熔化极活性气体保护焊多层单道焊焊缝跟踪需要,提出一种基于被动视觉传感的焊缝偏差识别方法. 首先通过旋转电弧位置传感器和处于触发工作模式的CCD摄像机获取电弧旋转到坡口左侧和坡口右侧时的焊接图像,然后根据图像灰度直方图特点,构建了自适应双阈值获取算法. 大阈值用于获取电弧区域进而得到电弧中心位置;小阈值用于获取坡口工件区域,进而通过计算水平方向一阶差分得到坡口边缘. 通过对比一个电弧旋转周期内获取的两幅图像,可计算电弧旋转中心和坡口中心的偏差,得到焊缝偏差. 该偏差检测算法高效、可靠且可避免坡口底部改变带来的误差,同时可用于不同偏差算法的比较和融合.

关 键 词:   窄间隙   旋转电弧   熔化极活性气体保护焊   视觉传感   焊缝跟踪  
收稿时间:2014-07-31

A Vision Sensing Based Welding Deviation Detection Algorithm for Rotating Arc Narrow Gap MAG Welding
LI Wen hang,GAO Kai,WANG Jia you,HE Jin qiao. A Vision Sensing Based Welding Deviation Detection Algorithm for Rotating Arc Narrow Gap MAG Welding[J]. Journal of Shanghai Jiaotong University, 2015, 49(3): 353-356
Authors:LI Wen hang  GAO Kai  WANG Jia you  HE Jin qiao
Affiliation:(1. School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China; 2. Jiangsu Modern Shipbuilding Technology Co. Ltd., Zhenjiang 212003, Jiangsu, China)
Abstract:Abstract: Aimed at welding seam tracking of multi layer single pass welding by narrow gap rotating arc MAG, a passive vision sensing based welding deviation detection algorithm was proposed. First,the welding image was obtained by the welding position sensor and the CCD camera in trigger mode when the rotating arc was on the left or right side of the groove. Second, two adaptive thresholds were computed according to the grayscale histogram of the welding image. The large threshold was used to obtain the arc region and the arc central location. The small threshold was used to obtain the base metal area of the groove, and the edges of the groove were obtained by calculating the horizontal direction first order difference in special horizontal positions. Finally, by comparing the image process result of two images in each rotation arc cycle, the welding deviation, i.e. the difference between the center of arc rotating and the center of the groove, were obtained. The deviation detection algorithm is efficient and reliable. It can avoid the interference of the variation of the groove bottom, and be used for comparison or integration with other deviation detection algorithms.
Keywords:narrow gap  rotating arc  metal active gas(MAG) welding; vision sensor; seam tracking
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《上海交通大学学报》浏览原始摘要信息
点击此处可从《上海交通大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号