On the performance of a discriminant function |
| |
Authors: | Wieslaw Szczesny |
| |
Affiliation: | (1) Institute of Computer Science, Polish Academy of Sciences, 00-901 Warsaw PKiN X, Poland |
| |
Abstract: | In two-class discriminant problems, objects are allocated to one of the two classes by means of threshold rules based on discriminant functions. In this paper we propose to examine the quality of a discriminant functiong in terms of its performance curve. This curve is the plot of the two misclassification probabilities as the thresholdt assumes various real values. The role of such performance curves in evaluating and ordering discriminant functions and solving discriminant problems is presented. In particular, it is shown that: (i) the convexity of such a curve is a sufficient condition for optimal use of the information contained in the data reduced byg, and (ii)g with non-convex performance curve should be corrected by an explicitly obtained transformation. |
| |
Keywords: | Deferred decision Forced decision Grade transformation Identification rule Likelihood ratio Neyman-Pearson Curve Screening |
本文献已被 SpringerLink 等数据库收录! |
|