首页 | 本学科首页   官方微博 | 高级检索  
     

非强占型优先权的M/M/N可修排队系统
引用本文:朱翼隽,鲍媛媛. 非强占型优先权的M/M/N可修排队系统[J]. 系统工程与电子技术, 2009, 31(6): 1500-1505
作者姓名:朱翼隽  鲍媛媛
作者单位:江苏大学理学院, 江苏, 镇江, 212013
摘    要:研究一类带有非强占型优先权、服务台忙时与闲时故障率不同的M/M/N可修排队系统,在画出系统状态转移图的基础上,得到系统瞬态概率密度满足的微分方程组。利用拟生灭过程的方法求出系统稳态条件,并在此基础上得到系统的稳态平衡方程组。通过对稳态方程组的分析得到系统中关键的N(N+1)/2个稳态概率值的求解思路,使用Mathematica软件编程实现了稳态概率值的求取过程,并举出一个具体实例。在得到稳态概率值的基础上给出了有效服务台数的稳态分布、稳态队长的母函数这两个系统指标。

关 键 词:可修排队  优先权  稳态概率值  母函数
收稿时间:2008-03-28
修稿时间:2008-05-27

M/M/N repairable queue system under nonpreemptive priority
ZHU Yi-jun,BAO Yuan-yuan. M/M/N repairable queue system under nonpreemptive priority[J]. System Engineering and Electronics, 2009, 31(6): 1500-1505
Authors:ZHU Yi-jun  BAO Yuan-yuan
Affiliation:Faculty of Science, Jiangsu Univ., Zhenjiang 212013, China
Abstract:To study the M/M/N repairable queue system with one repairman and nonpreemptive priority,in which the rates of server breakdown are different between busy time and idle time,the differential equations of this system are obtained by receiving the state transition diagram.By using the QBD(quasi birth and death process) method,the steady-state condition is got,and then the steady-state balanced equations are obtained.By analysing,the thinking of solving the key steady probability is got.Because of the complexity of calculating the steady probability by handwork when N≥2,the steady probability,can be obtained by using Mathematica software,and a numberical example is given.On the basis of deriving the steady probability,two indices,the steady state distribution of the number of effective servers and the moment generating function of the steady state queue length,are also given.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号