摘 要: | 设PX是实Banach空间X的一锥。P_R={x∈P:‖x‖r>0使得(L_1):Ax≮x,x∈P_r且(L_2)ε>0,(1+ε)x≮Ax,x∈P_R,则A在P_RP_r中有一不动点。Leggett(1980)将(L_1)削弱为(L′_1):Ax≮x,x∈P(u),‖x‖=r,杜旭光(1983)进一步将(L′_1)削弱为(L″_1):Ax≮(1—ε)x,x∈P(u),‖x‖=r,0<ε<1.本文将上述文献中的全连续算子推广到集值凝聚映象,球形区域换成一般开集且将(L″_1)和(L_2)作进一步削弱。本文的结论改进和统一了[2,3,4,5]中相应结果。
|