首页 | 本学科首页   官方微博 | 高级检索  
     

二维波动方程的高精度交替方向隐式方法
引用本文:马月珍,李小纲,葛永斌. 二维波动方程的高精度交替方向隐式方法[J]. 四川师范大学学报(自然科学版), 2010, 33(2). DOI: 10.3969/j.issn.1001-8395.2010.02.010
作者姓名:马月珍  李小纲  葛永斌
作者单位:宁夏大学,应用数学与力学研究所,宁夏,银川,750021
摘    要:基于二阶微商的四阶紧致差商逼近公式及加权平均思想,提出了数值求解二维波动方程的2种精度分别为O(τ2+h4)和O(τ4+h4)的交替方向隐式(ADI)格式,以及与其相匹配的第一个时间层的同阶离散格式,并且通过Fourier方法分析了格式的稳定性.该方法在沿每个空间方向上只涉及3个网格基架点,因此可以重复采用TDMA算法,从而大大节省计算时间.数值实验验证了所用方法的精确性和可靠性.

关 键 词:波动方程  高阶紧致格式  交替方向隐式方法  稳定性

A High-accuracy Alternating Direction Implicit Method for Solving the Two-dimensional Wave Equation
MA Yue-zhen,LI Xiao-gang,GE Yong-bin. A High-accuracy Alternating Direction Implicit Method for Solving the Two-dimensional Wave Equation[J]. Journal of Sichuan Normal University(Natural Science), 2010, 33(2). DOI: 10.3969/j.issn.1001-8395.2010.02.010
Authors:MA Yue-zhen  LI Xiao-gang  GE Yong-bin
Affiliation:MA Yue-zhen,LI Xiao-gang,GE Yong-bin(Institute of Applied Mathematics , Mechanics,Ningxia University,Yinchuan 750021,Ningxia)
Abstract:Based on the second- and fourth-order compact difference formulas for second-order derivatives and the idea of weighted average,two classes of the alternating direction implicit (ADI) method are proposed for solving two-dimensional wave equation.The methods are of accuracy O(τ~2+h~4) and O(τ~4+h~4) respectively.Stability conditions are obtained by Fourier analysis method.For only three points are used on every time level,it permits to use TDMA algorithm with a considerable save of computing time.Numerical experiments prove the efficiency and dependability.
Keywords:wave equation  high-order compact scheme  alternating direction implicit method  stability
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号