摘 要: | 针对短期风电功率预测,将风电输出功率作为时间序列信号,由于其所具有波动性、非平稳性的特点,提出一种基于经验模态分解(EMD)、粒子滤波(PF)和广义回归神经网络(GRNN)的组合预测模型。首先,利用EMD对风电功率序列进行分解,获得各个相对平稳的模态分量;然后,将分解得到高离散度的数据采用PF进行分析处理,低离散度的数据采用GRNN进行分析处理,其中,通过粒子群算法(PSO),根据各低离散度数据自身特点优化GRNN的平滑因数,以进一步提高其预测性能和精度;最后,通过线性叠加各分量的预测结果得到最终风电功率的预测值。结果表明,与PSO-GRNN和单一GRNN结构相比,EMD-PF-GRNN预测模型的预测误差降低了6%左右,预测精度更高,可以更好的预测风电功率。
|