定常Stokes问题的新混合元格式 |
| |
引用本文: | 司红颖. 定常Stokes问题的新混合元格式[J]. 安徽大学学报(自然科学版), 2016, 40(6): 15-18. DOI: 10.3969/j.issn.1000-2162.2016.06.004 |
| |
作者姓名: | 司红颖 |
| |
作者单位: | 商丘师范学院 数学与信息科学学院,河南 商丘,476000 |
| |
基金项目: | 国家自然科学基金资助项目(11371103) |
| |
摘 要: | ![]() 利用Green公式将定常的Stokes问题转化为一个与其等价的新的混合变分格式,基于新的混合变分格式,对速度和压力分别用双二次元和双线性元进行逼近.该格式避开了H(div)空间,使得空间构造简单;同时在特殊的单元剖分下通过定义插值算子,利用有限元插值理论和一些特殊技巧,得到了速度的能量模及压力的L~2模的最优误差估计.
|
关 键 词: | 定常的Stokes问题 新混合元格式 LBB(leakbeforebreak)条件 最优误差估计 |
New mixed element schemes for steady Stokes problem |
| |
Abstract: | ![]() In this paper, the new equivalent mixed variational form for steady stokes problem was presented by using Green formula.Based on the mixed variational form for steady stokes problem, the velocity and the pressure were approximated by biquadratic and bilinear elements separately, and avoided the H(div) space, and made the space structure simple.Under the special rectangular subdivision, the interpolation operator was defined.Then by using special qualities of interpolation and some novel skill, the error estimates of optimal order were derived both in the norm for the velocity and the L2-norm for the pressure. |
| |
Keywords: | steady Stokes problem new mixed variational form LBB(leak before break) condition optimal error estimate |
本文献已被 CNKI 万方数据 等数据库收录! |
|