首页 | 本学科首页   官方微博 | 高级检索  
     

图8.8.4格的链环分支数
引用本文:蒋乐萍,黄粉丽. 图8.8.4格的链环分支数[J]. 湖南理工学院学报:自然科学版, 2012, 0(4): 17-18,21
作者姓名:蒋乐萍  黄粉丽
作者单位:三亚学院理工分院,海南三亚572002
摘    要:链环分支数与符号平图之间有一一对应关系,这种对应是通过中间图来实现的,它提供了通过图研究链环的一个方法.在二十世纪八十年代末,这一对应就被用于建立纽结理论中的琼斯多项式的关系,但链环分支数与对应平图的符号无关,链环分支数是链环的最简单的一个不变量,求符号平图对应链环分支数是通过平图研究链环的最基本的问题之一,本文确定了8.8.4格的链环分支数.

关 键 词:8.8.4格  Reidemeister变换  平图  链环

Determining the Component Number of Links Corresponding to 8.8.4 Lattices
JIANG Le-ping,HUANG Fen-li. Determining the Component Number of Links Corresponding to 8.8.4 Lattices[J]. Journal of Hunan Institute of Science and Technology, 2012, 0(4): 17-18,21
Authors:JIANG Le-ping  HUANG Fen-li
Affiliation:(San Ya University, Polytectmie Institute, Sanya 572002, China)
Abstract:There is a one-to-one correspondence between signed plane graphs and link diagrams via the medial construction. Indeed, it provides a method of studying links using graphs. In the late 1980s, the correspondence was used to obtain a relation between Jones polynomial in kont theory and Tutte polynomial in graph theory. The component number of the corresponding link diagrams is however independent of the signs of the plane graph. One of the first problems in studying links by using graphs via this correspondence may be that of determining the component number of the link diagrams corresponding to a signed plane graph. In this paper, we shall determine the component numbers of links corresponding to 8.8.4 lattices.
Keywords:8.8.4 lattices  Reidemeister move  plane graph  link
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号