首页 | 本学科首页   官方微博 | 高级检索  
     

云计算环境下智能电网短期负荷预测方法研究
引用本文:王萍,李磊,胡聪,郭洋,张靖,吴尚. 云计算环境下智能电网短期负荷预测方法研究[J]. 科学技术与工程, 2018, 18(7)
作者姓名:王萍  李磊  胡聪  郭洋  张靖  吴尚
作者单位:国网安徽省电力公司信息通信分公司,曲阜师范大学工学院,国网安徽省电力公司信息通信分公司,国网安徽省电力公司信息通信分公司,国网安徽省电力公司信息通信分公司,国网安徽省电力公司信息通信分公司
摘    要:智能电网短期负荷波动性大,传统预测方法无法解决波动性问题,预测结果不准确。为此,提出一种新的云计算环境下智能电网短期负荷预测方法。介绍了支持向量机理论,将一个含有所有某类样本在内的、由支持向量支撑的球面看作超球面,分析了分位数回归过程,将支持向量机和分位数结合在一起,构建支持向量-分位数回归预测模型。得到短期负荷概率密度函数,从而实现智能电网短期负荷预测。在进行实验时,完成对功率采样值和智能电网负荷属性的归一化处理,将其转换成[0,1]区间内的数据。实验结果表明,所提方法预测精度和效率高、成本低。

关 键 词:云计算环境;智能电网;短期负荷;预测
收稿时间:2017-08-01
修稿时间:2017-10-13

Research on short term load forecasting method for smart grid under cloud computing environment
Wang Ping,Li Lei,Hu Cong,Guo Yang,Zhang Jing and Wu Shang. Research on short term load forecasting method for smart grid under cloud computing environment[J]. Science Technology and Engineering, 2018, 18(7)
Authors:Wang Ping  Li Lei  Hu Cong  Guo Yang  Zhang Jing  Wu Shang
Affiliation:State grid anhui electric power company,Qufu normal university,college of engineering,State grid anhui electric power company,State grid anhui electric power company,State grid anhui electric power company,State grid anhui electric power company
Abstract:The short-term load fluctuation of smart grid is very large, and the traditional forecasting methods can not solve the problem of volatility, and the prediction results are inaccurate. To this end, proposes a new cloud computing environment of smart grid short-term load forecasting methods, introduces the theory of support vector machine, one containing all certain samples, supported by the support vector sphere as hypersphere, analyzed the quantile regression, support vector machine and quantile together, build quantile regression prediction model of support vector, get the short-term load probability density function, so as to realize the short-term load forecast of smart grid. During the experiment, the normalized sampling of the power sampling value and the smart grid load attributes is completed and converted into the data within the [0,1] interval. Experimental results show that the proposed method has high prediction accuracy and efficiency and low cost.
Keywords:Cloud computing environment   smart grid   short-term load   prediction
本文献已被 CNKI 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号