摘 要: | 针对快速点特征直方图(fast point feature histogram, FPFH)与迭代最近点(iterative closest point, ICP)算法结合的配准方法达不到精度要求的问题,文章在FPFH的基础上加入特征点的提取与匹配,使得配准精度进一步提升。该方法先通过尺度不变特征变换(scale-invariant feature transform, SIFT)算法和3DHarris算法对点云数据的特征点进行提取,再通过计算FPFH寻找对应点对,使用随机采样一致性(random sample consensus, RANSAC)算法剔除错误点对,通过奇异值分解(singular value decomposition, SVD)算法计算初始旋转矩阵和平移矩阵,最后用传统ICP精配准。结果表明,基于特征点匹配的算法相比基于特征描述的算法精度更高。
|