首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF网络的混沌时间序列的建模与多步预测
引用本文:李冬梅,王正欧. 基于RBF网络的混沌时间序列的建模与多步预测[J]. 系统工程与电子技术, 2002, 24(6): 81-83
作者姓名:李冬梅  王正欧
作者单位:天津大学系统工程研究所,天津,300072
摘    要:提出将RBF神经网络应用于混沌时间序列的建模与预测中 ,设计了一个三层RBF网络结构 ,说明了RBF网络用于混沌时间序列建模和预测时的基本性质。仿真结果表明 ,RBF网络模型对混沌时间序列有比较强的拟合能力和比较高的一步及多步预测精度。采用RBF网络进行混沌时间序列的建模和预测能够取得比其它方法好得多的效果。

关 键 词:混沌时间序列  时间序列预测  RBF神经网络
文章编号:1001-506X(2002)06-0081-03
修稿时间:2001-06-02

Modeling and Multi-Step Prediction of Chaotic Time Series Based on RBF Neural Networks
LI Dong mei,WANG Zheng ou. Modeling and Multi-Step Prediction of Chaotic Time Series Based on RBF Neural Networks[J]. System Engineering and Electronics, 2002, 24(6): 81-83
Authors:LI Dong mei  WANG Zheng ou
Abstract:We present that RBF neural networks can be used in the modeling and prediction of chaotic time series. A three layers RBF network structure is designed and fundamental properties of RBF networks are clarified when they are used in the modeling and prediction of chaotic time series. Simulations show that RBF networks models have good fitness and high accuracy of single and multistep prediction to the chaotic time series. Using RBF networks, simulation results for modeling and prediction of chaotic time series are far better than the other methods.
Keywords:Chaotic time series  Time series prediction  RBF neural networks
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号