首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Response of sagebrush steppe species to elevated CO 2 and soil temperature
Authors:Melissa S Lucash  Blake Farnsworth  William E Winner
Abstract:Elevated atmospheric CO 2 may cause long-term changes in the productivity and species composition of the sagebrush steppe. Few studies, however, have evaluated the effects of increased CO 2 on growth and physiology of species important to this ecosystem. Since the response of plants to elevated CO 2 may be limited by environmental factors, soil temperature was also examined to determine if low soil temperatures limit CO 2 response. To determine how CO 2 and soil temperature affect the growth of species native to the sagebrush steppe, bottlebrush squirreltail Elymus elymoides (Raf.) Swezey], Thurber needlegrass ( Stipa thurberiana Piper), and Wyoming big sagebrush ( Artemisia tridentata ssp. wyomingensis Beetle) were grown in ambient (374 mL L -1 ) or high (567 mL L -1 ) CO 2 and low (13° C) or high (18° C) soil temperature for approximately 4 months. Although soil temperature affected the growth of squirreltail and needlegrass, temperature did not modify their response to elevated CO 2 . Total biomass of sagebrush was consistent across soil temperature and CO 2 treatments, reflecting its slow-growing strategy. All 3 species had higher leaf water-use efficiency at elevated CO 2 due to higher net photosynthesis and lower transpiration rates. We conclude that elevated CO 2 and soil warming may increase the growth of grasses more than shrubs. Field studies in the sagebrush steppe are necessary to determine if differences in biomass, resulting from changes in CO 2 and soil temperature, are exhibited in the field.
Keywords:
点击此处可从《》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号