Abstract: | Genetic variation within populations reflects population-level social and demographic processes and influences how a population behaves as an evolutionary unit. We examined partitioning of genetic variation in striped skunks ( Mephitis mephitis ) from the Southern High Plains of Texas during 1994-1995. Sixty-nine male and 35 female skunks were sampled on four 12.8-km 2 study plots. Plot centers ranged from 17.6 to 61.6 km apart. We used multi-locus DNA fingerprinting with 2 probes, pV47 and CTTxAGG, to test 3 hypotheses: (1) females are more genetically similar to other females than males are to other males on the same plot (indicating greater female philopatry than male philopatry), (2) genetic similarity is greater within plots than among plots (indicating partitioning of genetic variation in space), and (3) genetic similarity of males decreases as the distance separating males increases (indicating geographic distance affects rates of gene flow). In general, males on a plot had lower average genetic similarity than females. Genetic similarity within plots was not different from genetic similarity among plots for males or for females. Genetic similarity of males did not decrease with increasing distance among plots. The lack of geographical genetic structure in striped skunks suggests at the scale of this study (< 60 km) that gene flow of biparentally inherited genes is not distance-mediated. However, the higher similarity values for females than for males on the same plot supports an effect of male-biased dispersal and female philopatry on partitioning of genetic variation between sexes. |