首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络免疫集成的非线性时间序列故障预报
引用本文:张正道,胡寿松. 基于神经网络免疫集成的非线性时间序列故障预报[J]. 东南大学学报(自然科学版), 2004, 0(Z1)
作者姓名:张正道  胡寿松
作者单位:南京航空航天大学自动化学院,南京航空航天大学自动化学院 南京210016,江南大学控制科学与工程研究中心,无锡214036,南京210016
基金项目:国家自然科学基金重点资助项目 (60 2 3 40 10 ),国防基础科研资助项目 (K160 3 0 60 3 18),航空科学基金资助项目 (0 2E5 2 0 2 5 ) .
摘    要:针对神经网络集成对个体差异性的要求 ,提出了集成网络间的结构差异度的概念 .在此基础上设计了一种基于反向选择的免疫算法 ,该算法可以在减小集成网络各自训练误差的同时保持网络间的结构差异度 ,从而提高神经网络集成的泛化能力 .同时证明了该算法对最优个体的收敛性 .将该方法应用于受噪声污染的非线性时间序列故障预报 ,根据预测误差可以方便准确地检测系统的缓变故障和突变故障 ,实现对微小故障的快速故障预报 ,降低误检率 .仿真结果证明了该方法的有效性 .

关 键 词:非线性  时间序列  神经网络集成  免疫  故障预报

Neural network immune ensemble based fault prediction for nonlinear time series
Zhang Zhengdao , Hu Shousong. Neural network immune ensemble based fault prediction for nonlinear time series[J]. Journal of Southeast University(Natural Science Edition), 2004, 0(Z1)
Authors:Zhang Zhengdao    Hu Shousong
Affiliation:Zhang Zhengdao 1,2 Hu Shousong1
Abstract:A concept named structure difference among neural networks in ensemble is propos ed, which is directed towards the request of individual discrepancy. Based on th is concept, a negative selection based immune algorithm is designed and the convergence of the proposed algorithm is proved. The algorithm can keep the structure difference d egree among networks while the training error of the network is reduced. Thus t he generalization performance of neural network ensemble is improved. By this me thod, the abrupt fault and incipient fault of system can be detected quickly and conveniently. And the tiny unknown fault in the nonlinear time series with nois e can be predicted conveniently and accurately based on the prediction error. Th e error rate of prediction is also reduced. Simulation results show the effectiv eness and feasibility of the method.
Keywords:nonlinear  time series  neural network ensemble  immune  fault prediction
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号