首页 | 本学科首页   官方微博 | 高级检索  
     

不可压缩Ogden材料组成的球壳的有限振动
引用本文:王俊芳,杜雁芳. 不可压缩Ogden材料组成的球壳的有限振动[J]. 大连民族学院学报, 2012, 14(3): 239-241. DOI: 10.3969/j.issn.1009-315X.2012.03.014
作者姓名:王俊芳  杜雁芳
作者单位:1.辽宁师范大学数学学院,辽宁大连,116029;2.辽宁师范大学数学学院,辽宁大连,116029
摘    要:研究了由一类各向同性不可压缩Ogden材料组成的球壳在突加拉伸载荷作用下的有限振动问题。首先利用平衡微分方程、边界条件和初始条件求得了球壳径向对称运动的微分方程,证明了存在一个临界值。当拉伸载荷未达到这个临界值时,随着时间的增加,球壳的内表面将做非线性周期振动;当拉伸载荷超过这个临界值时,球壳最终会破裂。最后给出了相应的数值算例。

关 键 词:各向同性Ogden材料  球壳  非线性周期振动  

Finite Oscillation of Spherical Shell Composed of a Class of Incompressible Ogden Materials
WANG Jun-fang,DU Yan-fang. Finite Oscillation of Spherical Shell Composed of a Class of Incompressible Ogden Materials[J]. Journal of Dalian Nationalities University, 2012, 14(3): 239-241. DOI: 10.3969/j.issn.1009-315X.2012.03.014
Authors:WANG Jun-fang  DU Yan-fang
Affiliation:WANG Jun - fang, DU Yan - fang (School of Mathematics, Liaoning Normal University, Dalian Liaoning 116029, China)
Abstract:The finite oscillation problem is considered for a spherical shell composed of a class of isotropic incompressible Ogden materials under a suddenly applied tensile load. At first, a differential equation describing the radial symmetric motion of the spherical shell has been obtained by using equilibrium differential equation, boundary conditions and initial condition. It is proved that there exists a critical load, if the tensile load is smaller than the critical value, the radial motion of the inner surface is a nonlinear periodic oscillation with increasing time. However, if the tensile load exceeds the critical value, the spherical shell will be destroyed ultimately. Finally, numerical examples are given to further illustrate the properties of the solutions.
Keywords:isotropic Ogden material  spherical shell  nonlinear periodic oscillation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《大连民族学院学报》浏览原始摘要信息
点击此处可从《大连民族学院学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号