首页 | 本学科首页   官方微博 | 高级检索  
     

基于WEB的服务发现流研究
引用本文:仇建平. 基于WEB的服务发现流研究[J]. 应用科技, 2013, 0(6): 46-49
作者姓名:仇建平
作者单位:太原科技大学计算机学院,山西太原030024
基金项目:山西省回国留学人员科研资助项目(2013-097);山西省自然科学基金资助项目(2012011011-5);山西省重大科技专项资助项目(20121101001)、大学生创新创业专项资助项目(UIT)(xj2012007);太原科技大学工会理论研究资助项目(201303).
摘    要:通过搜集和分析WEB用户行为数据,提出了研究WEB用户行为的一个新的视角,即把人看作是传播的内容,把信息资源看作是对象,在这种思路下,WEB网络可以被看作是一个人类集体服务发现流在信息资源之间分配和流动的网络,即服务发现流网络.应用向量自回归条件异方差模型设计了服务发现流预测算法,为了管理不确定性,引入了一些随机变量,这些随机变量会不断地被预测的各个阶段所积累,但通过使用时间序列分析大大地减轻了这种状况.

关 键 词:WEB用户  服务发现流  预测算法  向量自回归条件异方差模型  时间序列

Research on service discovery stream based on WEB
QIU Jianping. Research on service discovery stream based on WEB[J]. Applied Science and Technology, 2013, 0(6): 46-49
Authors:QIU Jianping
Affiliation:QIU Jianping Institute of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
Abstract:By collecting and analyzing the data on the behaviors of WEB users, in this paper, the author proposes a new perspective on researching the behaviors of WEB users, i.e., WEB users are regarded as content propagated in WEB and the information resources are regarded as object. By this means, the WEB may be regarded as a network that a humanity collective service discovery stream is assigned and flows among information resources, i.e., the service discovery stream network. The author applies the vector autoregressive conditional heteroscedasticity model (VARCH) to the design on the prediction algorithm of the service discovery stream. In order to manage the uncer,tainty, some random variables are introduced, which may be accumulated continually at each prediction stage. However, this situation is mitigated greatly by the application of the analysis on time series.
Keywords:WEB' user  seawice discovery stream  prediction algorithm  vector autoregressive conditional heterosce-dasticity model (VARC~) ,, time series
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号