首页 | 本学科首页   官方微博 | 高级检索  
     

结构可靠度计算的Neumann展开响应面法
引用本文:苏成,李鹏飞,韩大建. 结构可靠度计算的Neumann展开响应面法[J]. 华南理工大学学报(自然科学版), 2009, 37(9)
作者姓名:苏成  李鹏飞  韩大建
作者单位:1. 华南理工大学,土木与交通学院,广东,广州,510640;华南理工大学,亚热带建筑科学国家重点实验室,广东,广州,510640
2. 广东省建筑科学研究院,广东,广州,510500
基金项目:国家科技支撑计划子课题,华南理工大学亚热带建筑科学国家重点实验室资助课题 
摘    要:
当结构功能函数无法表达为随机变量的解析表达式时,响应面法是一种有效的可靠度计算方法,但该法在进行有限元数值试验时需进行多次确定性有限元分析,效率较低。提出一种改进的响应面法,即Neumann展开响应面法,该法通过引入Neumann级数展开式,可以有效缩短有限元数值试验时间,从而提高响应面法的计算效率。数值算例表明,结构刚度矩阵规模越大,Neumann展开响应面法的计算效率越高。

关 键 词:可靠度  Neumann级数展开  有限元法  响应面法  
收稿时间:2008-06-30
修稿时间:2009-01-19

CALCULATION OF STRUCTURE RELIABILITY BY NEUMANN EXPANSION RESPONSE SURFACE METHOD
Pengfei LiDa-Jian HAN. CALCULATION OF STRUCTURE RELIABILITY BY NEUMANN EXPANSION RESPONSE SURFACE METHOD[J]. Journal of South China University of Technology(Natural Science Edition), 2009, 37(9)
Authors:Pengfei LiDa-Jian HAN
Affiliation:Su Cheng1,2 Li Peng-fei3 Han Da-jian1,2(1.School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,Guangdong,China,2.State Key Laboratory of Subtropical Building Science,3.Guangdong Provincial Academy of Building Research,Guangzhou 510500,China)
Abstract:
Response surface method (RSM) is an effective approach for reliability analysis when structure performance functions can not be explicitly expressed by random variables. However, the method requires multi-determinate finite element analysis when conducting finite element numerical tests. As a result, RSM is usually of low efficiency. An improved RSM, the Neumann expansion response surface method (NERSM), is proposed in this study. The present approach can effectively reduce the computation time of the finite element numerical tests by introducing Neumann expansion techniques, and therefore, improve the computation efficiency of the conventional RSM. Numerical examples show NERSM has high efficiency when the scale of the structure stiffness matrix becomes larger.
Keywords:reliability  Neumann series expansion  finite element method  response surface method
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《华南理工大学学报(自然科学版)》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号