首页 | 本学科首页   官方微博 | 高级检索  
     

人工神经网络预测离子色谱分离条件
引用本文:程祥磊,鲍慈光,彭莉. 人工神经网络预测离子色谱分离条件[J]. 云南大学学报(自然科学版), 2003, 25(1): 61-64
作者姓名:程祥磊  鲍慈光  彭莉
作者单位:云南大学,化学与材料工程学院,云南,昆明,650091
摘    要:
 以EDTA为淋洗液,用均匀试验设计法研究了高Cl-浓度下Cl-与NO2-,NO3-的分离条件.将实验条件和实验结果作为BP神经网络的训练集,同时对网络的结构和训练速率进行筛选和优化.经过2567次训练后,网络训练误差达到10-5.对训练结果的考察表明,人工神经网络以较少的实验数据成功建立了离子色谱分离条件的预测模型,最大相对误差仅为0.85%.

关 键 词:离子色谱法  人工神经网络  训练  相对误差
文章编号:0258-7971(2003)01-0061-04
修稿时间:2001-12-02

Prediction of ion chromatographic separation condition by artificial neural network
CHENG Xiang-Lei,BAO Ci-Guang,PENG Li. Prediction of ion chromatographic separation condition by artificial neural network[J]. Journal of Yunnan University(Natural Sciences), 2003, 25(1): 61-64
Authors:CHENG Xiang-Lei  BAO Ci-Guang  PENG Li
Affiliation:Institute of Chemistry and Material Engineer, Yunnan University, Kunming 650091, China
Abstract:
The separation conditions of Cl-,NO3- and NO2- in high mass concentration of chloride are presented by uniform design.With experimental conditions and results as training collections, the architecture and learning rates of Back-Propagation Artificial Neural Network (BP-ANN) are optimized. Having been trained 2567 times, the errors of the network are in 10-5 order.The examination for the training results indicates that the artificial neural network sets up successfully the prediction models of ion chromatographic separation with less experimental data than those from general experimental method.The maximum relative error is only 0.85%.
Keywords:ion chromatography  artificial neural network  training  relative error
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《云南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《云南大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号