首页 | 本学科首页   官方微博 | 高级检索  
     

基于前视声呐信息的AUV避碰规划研究
引用本文:刘和祥,边信黔,秦政,王宏健. 基于前视声呐信息的AUV避碰规划研究[J]. 系统仿真学报, 2007, 19(24): 5672-5674,5679
作者姓名:刘和祥  边信黔  秦政  王宏健
作者单位:哈尔滨工程大学,自动化学院,哈尔滨,150001
基金项目:黑龙江省博士后科研启动基金
摘    要:
在复杂海洋环境中,利用前视声呐获取的障碍物信息指导自治水下机器人(AUV)进行局部避碰。主要采用强化学习的方法对AUV进行控制和决策,综合Q学习算法、BP神经网络和人工势场法对AUV进行避碰规划。强化学习的方法强调AUV在环境的影响中学习,通过环境对不同行为的评价性反馈信号来改变行为选择策略。并且在环境发生变化时,AUV通过学习来实现对新环境的适应,不断改进其自治能力,进而实现在不确定环境下的避障任务。开发了AUV运动规划的虚拟仿真软件系统,仿真实验证明了算法的合理性与可行性。

关 键 词:前视声呐  自治水下机器人  强化学习  人工势场  避碰规划
文章编号:1004-731X(2007)24-5672-03
收稿时间:2006-10-12
修稿时间:2007-01-24

Research on Obstacle Avoidance Planning for AUV Based on Forward Looking Sonar
LIU He-xiang,BIAN Xin-qian,QIN Zheng,WANG Hong-jian. Research on Obstacle Avoidance Planning for AUV Based on Forward Looking Sonar[J]. Journal of System Simulation, 2007, 19(24): 5672-5674,5679
Authors:LIU He-xiang  BIAN Xin-qian  QIN Zheng  WANG Hong-jian
Abstract:
The obstacle information obtained with forward sonar is to instruct local avoidance for Autonomous Underwater Vehicles(AUV) in complex sea environment. The reinforcement learning is adopted to control and decision for AUV,and Q-learning,BP neural net,artificial potential is integrated to avoidance planning for AUV. The reinforcement learning method emphasizes that AUV can change behavior select strategy by estimate feedback signal from different environment during AUV learns from environment. When environment changes,AUV can improve autonomous ability by adapting to the new environment and complete obstacle avoidance under uncertain environment. The visual simulation soft system for motion planning and simulation of AUV was developed,and the validity and feasibility were verified through simulation test.
Keywords:forward looking sonar   autonomous underwater vehicle   reinforcement learning   artificial potential   obstacle avoidance planning
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号