首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进微粒群算法的K-MEANS聚类和孤立点查找
引用本文:肖会敏,刘臣,杨晓兵. 基于改进微粒群算法的K-MEANS聚类和孤立点查找[J]. 河南科学, 2007, 25(1): 107-111
作者姓名:肖会敏  刘臣  杨晓兵
作者单位:河南财经学院,信息学院,郑州,450002;河南财经学院,信息学院,郑州,450002;河南财经学院,信息学院,郑州,450002
摘    要:K均值算法的聚类个数K需指定,聚类结果与数据输入顺序相关,而且易受孤立点影响.针对这些缺陷,首先以实验的方式证明了找到最优的初始质心是K-MEANS算法有效的条件,对局部版的微粒群优化算法(PSO)进行了改进,利用其局部搜索的功能查找到K均值算法的最优初始质心和存在的孤立点,克服了K均值算法的这些缺陷。

关 键 词:微粒群算法  K均值算法  聚类  孤立点查找
文章编号:1004-3918(2007)01-0107-05
修稿时间:2006-08-03

K-Means Clustering and Outlier Detection Based on PSO
XIAO Hui-min,LIU Chen,YANG Xiao-bing. K-Means Clustering and Outlier Detection Based on PSO[J]. Henan Science, 2007, 25(1): 107-111
Authors:XIAO Hui-min  LIU Chen  YANG Xiao-bing
Affiliation:School of Information, Henan University of Finance and Economics, Zhengzhou 450002, China
Abstract:K-means algorithm has some deficiencies.The number K must be pointed and its effectiveness liable to be effected by isolated data and the input sequence of data.To solve these deficiencies,data experiments were done to find the precondition of K-means effectiveness,which is finding the best initial core.Then a new algorithm that base on PSO is composed to find the initial core and the outlier.Through these,the disadvantages of K-means were solved.
Keywords:PSO  K-means  clustering  outlier detection
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号