摘 要: | 由于多数交通流预测模型仅利用了目标路段交通流的历史数据,在一定程度上影响了预测效果。为此,该文提出了一种基于时空依赖性的区域路网短时交通流预测模型。首先,根据区域路网各路段间的拓扑关系,将其抽象为明确表征上下游路段关系的树状结构,进而根据上下游通路上交叉口转弯率的多阶分配来量化上下游路段的时空依赖性,并将其用于时空自回归差分移动平均模型(STARIMA)空间权重矩阵的改进,最后利用历史数据对改进后的STA-RIMA模型进行参数标定,并用于短时交通流预测。实验结果表明:经过改进后的STARIMA模型,具有更好的预测效果,为区域路网短时交通流预测提供了一种新的方法。
|