首页 | 本学科首页   官方微博 | 高级检索  
     

基于非负矩阵分解新的人脸识别方法
引用本文:李勇智,杨静宇. 基于非负矩阵分解新的人脸识别方法[J]. 系统仿真学报, 2008, 20(1): 111-116
作者姓名:李勇智  杨静宇
作者单位:1. 南京林业大学信息科学技术学院,南京,210037;南京理工大学计算机系,南京210094
2. 南京理工大学计算机系,南京,210094
基金项目:国家自然科学基金资助项目(60472060),江苏省高校自然基金项目(06KJD520085),南京林业大学人才基金资助项目(2002-10)
摘    要:
非负矩阵分解是一个新的特征提取方法,基于非矩阵分解的理论,提出了具有正交性的投影轴的计算方法和具有统计不相关性的投影轴的计算方法。与原非负矩阵分解方法,提出的方法在某种程度上是降低了特征矢量之间的统计相关性,并且提高识别率。通过在ORL人脸库和YALE人脸库上进行实验,结果表明提出的两种特征提取方法在识别率方面整体上好于原非负矩阵分解特征提取(NMF)方法,甚至超过主成分分析(PCA)法。

关 键 词:非负矩阵分解  正交投影轴  统计不相关性  特征提取  人脸识别
文章编号:1004-731X(2008)01-0111-06
收稿时间:2006-10-24
修稿时间:2007-01-18

Novel Methods of Face Recognition Based on Non-negative Matrix Factorization
LI Yong-zhi,YANG Jing-yu. Novel Methods of Face Recognition Based on Non-negative Matrix Factorization[J]. Journal of System Simulation, 2008, 20(1): 111-116
Authors:LI Yong-zhi  YANG Jing-yu
Abstract:
Non-negative matrix factorization (NMF) is a new feature extraction method. Based on the Non-negative matrix factorization (NMF), a new algorithm of orthogonal projection axis and a new algorithm of statistically uncorrelated projection axis for feature extraction were proposed. Compared with original NMF method, the proposed methods are better in terms of reducing or eliminating the statistical correlation between features and improving recognition rate. The experimental results on Olivetti Research Laboratory (ORL) face database and YALE face database show that the new methods are better than original NMF in terms of recognition rate and even outperform PCA.
Keywords:non-negative matrix factorization   orthonormal projection axis   statistical uncorrelation   feature extraction   face recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号