首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF网络的混沌动力系统辨识
引用本文:李冬梅,王正欧. 基于RBF网络的混沌动力系统辨识[J]. 天津大学学报(自然科学与工程技术版), 2002, 35(2): 191-195
作者姓名:李冬梅  王正欧
作者单位:天津大学系统工程研究所 天津300072(李冬梅),天津大学系统工程研究所 天津300072(王正欧)
摘    要:提出用RBF神经网络对混沌动力系统进行辨识,设计了一个三层RBF网络结构,仿真实验说明了RBF网络用于学习混沌动力系统时的基本性质。用辨识模型重建吸引子方法定性地评价辨识模型,通过计算辨识模型的Lyapunov指数定量地评价辨识模型的性能,同时推导了RBF网络模型Lyapunov指数的计算公式。仿真结果表明,该辨识模型能很好地逼近原混沌动力系统,准确地体现原混沌系统的动力学特性。

关 键 词:混沌系统辨识 RBF神经网络 混沌动力系统
文章编号:0493-2137(2002)02-0191-05
修稿时间:2001-12-20

Identification of Chaotic Dynamical Systems Based on RBF Neural Networks
LI Dong mei,WANG Zheng ou. Identification of Chaotic Dynamical Systems Based on RBF Neural Networks[J]. Journal of Tianjin University(Science and Technology), 2002, 35(2): 191-195
Authors:LI Dong mei  WANG Zheng ou
Abstract:Chaotic dynamical systems can be identified by RBF neural networks.A three layer RBF network structure was designed and the fundamental properties of the RBF networks were clarified to learn chaotic dynamical systems through some numerical experiments.A qualitative evaluation of the identified models was made with the reconstruction of an attractor by the identified models,and a quantitative evaluation of the identified models was made with calculation of the Lyapunov exponents of the identified models,too.The formula of the Lyapunov exponents of RBF networks models is derived.Simulations show that the identified models can approach the original chaotic dynamical systems and extract the dynamical characteristics of the original chaotic systems.
Keywords:chaotic systems identification  RBF neural networks  chaotic dynamical systems
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号