首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进GA的K-均值聚类算法
引用本文:向永生,张颖,刘燕婷,陈曦. 基于改进GA的K-均值聚类算法[J]. 长沙理工大学学报(自然科学版), 2009, 6(1): 73-76
作者姓名:向永生  张颖  刘燕婷  陈曦
作者单位:长沙理工大学,城南学院,湖南,长沙,410076;长沙理工大学,计算机与通信工程学院,湖南,长沙,410004
基金项目:湖南省自然科学基金,湖南省教育厅科研项目 
摘    要:
利用遗传算法或免疫规划算法解决初始聚类中心是较好的方法,但容易出现局部早熟现象.为了克服以上缺点,借助免疫机制的优点,将免疫原理的选择操作机制引入遗传算法中,提出基于改进遗传的K-均值聚类算法,该方法结合K-均值算法的高效性和改进遗传算法的全局优化能力,较好地解决了聚类中心优化问题.试验结果表明,本算法能够有效改善聚类质量.

关 键 词:聚类  改进遗传算法  K-均值

K-means clustering algorithm based on improved GA
XIANG Yong-sheng,ZHANG Ying,LIU Yan-ting,CHEN Xi. K-means clustering algorithm based on improved GA[J]. Journal of Changsha University of Science and Technology(Natural Science), 2009, 6(1): 73-76
Authors:XIANG Yong-sheng  ZHANG Ying  LIU Yan-ting  CHEN Xi
Affiliation:1.School of Chengnan;Changsha University of Science and Technology;Changsha 410076;China;2.School of Computer and Communication Engineering;Changsha Universityof Science and Technology;Changsha 410004;China
Abstract:
The traditional K-means algorithm has the shortcoming that plunges into a local optimum prematurely because of sensitive selection of the initial cluster center.Using the genetic or immune algorithm into K-means algorithm to optimize cluster center is much better than using other algorithms,but there appeares the local early phenomenon easily.In order to overcome the shortcomings mentioned above,a K-means clustering algorithm based on improved GA is proposed,which uses the advantages of immune idea and intr...
Keywords:clustering  improved GA  K-means  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号