首页 | 本学科首页   官方微博 | 高级检索  
     


A minimal axiom group for rough set based on quasi-ordering
Authors:Dai Jian-Hua  Chen Wei-Dong  Pan Yun-He
Affiliation:Institute of Artificial Intelligence, Zhejiang University, Hangzhou 310027, China. jhdai@126.com
Abstract:Rough set axiomatization is one aspect of rough set study to characterize rough set theory using dependable and minimal axiom groups. Thus, rough set theory can be studied by logic and axiom system methods. The classic rough set theory is based on equivalent relation, but rough set theory based on reflexive and transitive relation (called quasi-ordering) has wide applications in the real world. To characterize topological rough set theory, an axiom group named RT, consisting of 4 axioms, is proposed. It is proved that the axiom group reliability in characterizing rough set theory based on similar relation is reasonable. Simultaneously, the minimization of the axiom group, which requires that each axiom is an equation and each is independent, is proved. The axiom group is helpful for researching rough set theory by logic and axiom system methods.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号