首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进多种群粒子群算法的光伏组件参数辨识
引用本文:吴越,陈志聪,吴丽君,林培杰,程树英,陆培民. 基于改进多种群粒子群算法的光伏组件参数辨识[J]. 福州大学学报(自然科学版), 2017, 45(1)
作者姓名:吴越  陈志聪  吴丽君  林培杰  程树英  陆培民
作者单位:福州大学微纳器件与太阳能电池研究所,福州大学微纳器件与太阳能电池研究所,福州大学微纳器件与太阳能电池研究所,福州大学微纳器件与太阳能电池研究所,福州大学微纳器件与太阳能电池研究所,福州大学微纳器件与太阳能电池研究所
基金项目:福建省教育厅产学研项目(JA14038),福建省科技厅工业引导性重点项目(2015H0021),国家自然科学基金(51508105),福建省自然科学基金(2015J05124),福建省科技厅高校产学合作项目(2016H6012)
摘    要:
针对光伏组件参数辨识问题,本文首先通过调整光伏单二极管超越方程重构出低计算复杂度的目标函数,又预估计模型参数对搜索空间进行优化,再结合多种群粒子群算法与单纯形算法的优点,构造出N-MPSO混合新算法用于光伏组件模型参数的精确稳定辨识。最后利用多种实际光伏组件测量数据对所提方法进行检验。结果表明N-MPSO算法相较于传统算法能够更加准确、快速且稳定地辨识出任意环境条件下光伏组件的模型参数,对于光伏组件及光伏电站的设计、测试与诊断具有实际意义。

关 键 词:光伏组件  参数辨识  N-MPSO算法

Photovoltaic module parameters identification based on an improved multi-group particle swarm optimization algorithm
Yue Wu,Zhicong Chen,Lijun Wu,Peijie Lin,Shuying Cheng and Peimin Lu. Photovoltaic module parameters identification based on an improved multi-group particle swarm optimization algorithm[J]. Journal of Fuzhou University(Natural Science Edition), 2017, 45(1)
Authors:Yue Wu  Zhicong Chen  Lijun Wu  Peijie Lin  Shuying Cheng  Peimin Lu
Affiliation:Institute of Micro-Nano Devices & Solar Cells, Fuzhou University,Institute of Micro-Nano Devices & Solar Cells, Fuzhou University,Institute of Micro-Nano Devices & Solar Cells, Fuzhou University,Institute of Micro-Nano Devices & Solar Cells, Fuzhou University,Institute of Micro-Nano Devices & Solar Cells, Fuzhou University,Institute of Micro-Nano Devices & Solar Cells, Fuzhou University
Abstract:
Addressing the issue of photovoltaic module parameters identification, a new hybrid algorithm based on multi-group particle swarm optimization and simplex method is proposed. Firstly, the transcendental equation of the single diode photovoltaic model is modified so as to greatly reduce the computation complexity. Secondly, the search space for the parameters is optimized by pre-estimating the parameters initial value. And then, combining the advantage of multi-group particle swarm optimization and simplex method, a hybrid N-MPSO algorithm is constructed to quickly obtain the stable and accurate parameters. Finally, the algorithm is validated by several groups of I-V data measured from some typical photovoltaic modules. The results show that the proposed N-MPSO algorithm can reach a higher accuracy and lower time complexity compared with some other conventional methods, which is significant to the design, testing and diagnosis of photovoltaic modules and power stations.
Keywords:PV module   Parameter identification  N-MPSO
点击此处可从《福州大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《福州大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号