首页 | 本学科首页   官方微博 | 高级检索  
     

带超强奇异积分的Galerkin边界元法
引用本文:张玲玲,祝家麟,林鑫,张守贵,王贵学. 带超强奇异积分的Galerkin边界元法[J]. 重庆大学学报(自然科学版), 2008, 31(1): 115-118
作者姓名:张玲玲  祝家麟  林鑫  张守贵  王贵学
作者单位:重庆大学,数理学院,重庆,400030;重庆师范大学,重庆,400000;重庆大学,生物工程学院,重庆,400030
基金项目:国家科技部国际科技合作重点项目
摘    要:当采用Calderon投影的第二个表达式的直接边界公式解Laplace方程的Neumann问题时,需求解含超强奇异性的第一类Fredholm积分方程.为了克服积分方程的奇异性,采用Galerkin边界元方法,利用广义函数的分部积分公式,把对积分核的两阶导数转移为未知边界量的旋度.对二维问题,采用线性单元时,边界旋度可离散为常向量,从而得到简单的计算公式,避免了超强奇异积分数值计算的困难.数值算例验证了这种方法的有效性和实用性.

关 键 词:Galerkin边界元  超强奇异积分  Laplace方程  Neumann问题
文章编号:1000-582X(2008)01-0115-04
收稿时间:2007-07-24
修稿时间:2007-07-24

Garlerkin Boundary Element Method with Hyper Singular integral kernel
ZHANG Ling-ling,ZHU Jia-lin,LIN xin,ZHANG Shou-gui,WANG Gui-xue. Garlerkin Boundary Element Method with Hyper Singular integral kernel[J]. Journal of Chongqing University(Natural Science Edition), 2008, 31(1): 115-118
Authors:ZHANG Ling-ling  ZHU Jia-lin  LIN xin  ZHANG Shou-gui  WANG Gui-xue
Abstract:A Galerkin Boundary Elements was applied to solve the first kind of integral equation with hyper-singularity, which can be deduced from the direct boundary integral formula for the Neumann problem of Laplace equation. The concept of integration by parts in the sense of distributions was used. When boundary rotation is introduced, the two order derivatives of singular kernel are shifted to the boundary rotation of unknown function in the Galerkin variational formulation. While linear boundary elements are used for 2-dimensional problems, the boundary rotation on each element can be discretized into a constant vector, so that the integration can be performed in a simple way and the difficulty of numerical calculation for hyper-singularity is overcome. The results of numerical examples demonstrate that the scheme presented is practical and effective.
Keywords:Garlerkin boundary element method    hyper singular integral    Laplace equation    Neumman problem
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号