首页 | 本学科首页   官方微博 | 高级检索  
     

Schur补矩阵秩的不等式性质
引用本文:段复建 狄勇婧. Schur补矩阵秩的不等式性质[J]. 长春大学学报, 2014, 0(2): 171-174
作者姓名:段复建 狄勇婧
作者单位:桂林电子科技大学数学与计算科学学院,广西桂林541004
基金项目:广西自然基金(2011GXNSFA018138)
摘    要:矩阵的秩是矩阵的主要特征之一,而矩阵的Schur补又是处理大规模矩阵的主要途径。本文在研究了实数与矩阵乘积的Schur补、共轭转置矩阵的Schur补与矩阵秩的等式关系之后,又给出了幂矩阵与Schur补矩阵之间的秩的不等式性质,从而为处理大规模的矩阵计算提供了理论支撑。

关 键 词:矩阵的秩  Schur补矩阵  矩阵乘积  初等变换

Inequality Properties of the Rank of Schur Complement Matrix
DUAN Fu-jian,DI Yong-jing. Inequality Properties of the Rank of Schur Complement Matrix[J]. Journal of Changchun University, 2014, 0(2): 171-174
Authors:DUAN Fu-jian  DI Yong-jing
Affiliation:(School of Mathematics and Computational Science, Guilin University of Electronic Technology, Guilin 541004, China)
Abstract:The rank of matrix is one of the major characteristics, and Schur complement is the main way to deal with large-scale ma- trix. This paper, based on studying the relations between real number and Schur complement of matrix product, as well as Schur com- plement of conjugated transpose matrix and the equality of the rank of matrix, gives the inequality properties of rank between power ma- trix and Schur complement matrix, which provides a theoretical support for dealing with large-scale matrix caiculation.
Keywords:rank of matrix  Schur complement  matrix multiplication  elementary transformation
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号