首页 | 本学科首页   官方微博 | 高级检索  
     

时间平滑ML协方差矩阵估计算法及性能分析
引用本文:曾浩,刘玲,覃剑,谭晓衡. 时间平滑ML协方差矩阵估计算法及性能分析[J]. 系统仿真学报, 2007, 19(19): 4517-4520
作者姓名:曾浩  刘玲  覃剑  谭晓衡
作者单位:重庆大学通信工程学院,重庆,400030
基金项目:重庆市自然科学基金;重庆大学自然科学基金
摘    要:以最少的快拍数得到最好性能的协方差矩阵估计是我们追求的目标,虽然这很难实现。由于对称阵列的协方差矩阵具有中央Hermitian性质,因而可以在协方差矩阵估计中加以利用。这种性质,体现在通过时间域平滑。分析给出了新算法的实现方法和概率密度函数,并通过MonteCarlo仿真,对算法的各种性能进行分析,表明该算法在相同快拍数时,比传统最大似然算法具有更小的误差性能。

关 键 词:协方差矩阵  中央Hermitian矩阵  最大似然  波束合成器
文章编号:1004-731X(2007)19-4517-04
收稿时间:2006-08-03
修稿时间:2007-03-22

Time Smoothing ML Estimation of Convariance Matrix and Performance Analysis
ZENG Hao,LIU Ling,QIN Jian,TIAN Xiao-heng. Time Smoothing ML Estimation of Convariance Matrix and Performance Analysis[J]. Journal of System Simulation, 2007, 19(19): 4517-4520
Authors:ZENG Hao  LIU Ling  QIN Jian  TIAN Xiao-heng
Affiliation:The communication college of CQU, Chongqing 400030, China
Abstract:To get the best performance with the least snapshots is the ideal object when the covariance matrix is estimated,although it is not easy. However,the covariance matrix of a symmetrical array antenna has central Hermitian property. A new technique was developed to estimate the covariance matrix,which smoothes the estimated covariance matrix in time domain according to the central Hermitian property. The density function was proposed. The Monte Carlo simulations show that this algorithm has the less estimation bias than general maximum likelihood estimation even with the same snapshots.
Keywords:covariance matrix  central Hermitian matrix  maximum likelihood  beamformer
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号