摘 要: | 为了解决不同时间采集的运动想象脑电数据之间存在的分布差异,避免跨时段使用前长时间的重校准步骤,提出了一种基于判别迁移特征学习(discriminative transfer feature learning, DTFL)的运动想象分类方法。DTFL通过联合匹配源域和目标域之间的边缘分布和类条件分布来减少域间的差异,同时最大化类间距离和最小化类内距离来保留类判别信息,从而提升对运动想象的分类性能。基于DTFL的运动想象分类方法无需目标域脑电样本的类别信息,可以有效避免长时间的校准。在脑机接口竞赛数据集上的实验结果表明,DTFL显著优于其他迁移学习方法,有效缓解跨域分布的不一致性,提高了运动想象的分类正确率。
|