首页 | 本学科首页   官方微博 | 高级检索  
     

运动想象脑机接口的判别迁移特征学习与分类
作者姓名:齐垒  陈民铀  张莉
作者单位:重庆大学电气工程学院,重庆 400030
基金项目:国家自然科学基金资助项目(51977020)。
摘    要:
为了解决不同时间采集的运动想象脑电数据之间存在的分布差异,避免跨时段使用前长时间的重校准步骤,提出了一种基于判别迁移特征学习(discriminative transfer feature learning, DTFL)的运动想象分类方法。DTFL通过联合匹配源域和目标域之间的边缘分布和类条件分布来减少域间的差异,同时最大化类间距离和最小化类内距离来保留类判别信息,从而提升对运动想象的分类性能。基于DTFL的运动想象分类方法无需目标域脑电样本的类别信息,可以有效避免长时间的校准。在脑机接口竞赛数据集上的实验结果表明,DTFL显著优于其他迁移学习方法,有效缓解跨域分布的不一致性,提高了运动想象的分类正确率。


关 键 词:脑机接口  运动想象  迁移学习
收稿时间:2022-01-15
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号