首页 | 本学科首页   官方微博 | 高级检索  
     

基于灰色关联度分析和支持向量机 回归的沥青路面使用性能预测
引用本文:赵静,王选仓,丁龙亭,房娜仁,李善强. 基于灰色关联度分析和支持向量机 回归的沥青路面使用性能预测[J]. 重庆大学学报(自然科学版), 2019, 42(4): 72-81
作者姓名:赵静  王选仓  丁龙亭  房娜仁  李善强
作者单位:长安大学 公路学院,西安,710064;广东华路交通科技有限公司,广州,510420
基金项目:广东省交通运输厅科技项目(科技-2015-02-011)。
摘    要:沥青路面使用性能多因素预测是一个复杂的非线性问题,传统预测模型存在很多不足。为弥补传统模型的缺陷,建立一个高精度、长周期、多因素的预测模型,通过灰色关联度分析对各因素进行降维处理,选择与沥青路面使用性能关联度较大的影响因素进行支持向量机回归非线性预测,提出了基于灰色关联度分析和支持向量机回归(GRA-SVR)的沥青路面使用性能预测模型。最后选用广云高速实测车辙指数(RDI)值进行实例验证,并同GM(1,1)和PPI两种模型的预测结果进行了对比分析。结果表明:基于GRA-SVR建立的多因素预测模型具有很好的精度和可操作性,可在长周期过程中使用,为大数据养护决策提供了模型参考和依据。

关 键 词:沥青路面使用性能  支持向量机回归  灰色关联度分析  使用性能预测  路面养护
收稿时间:2018-12-20

Performance prediction of asphalt pavement based on grey relational analysis and support vector machine regression
ZHAO Jing,WANG Xuancang,DING Longting,FANG Naren and LI Shanqiang. Performance prediction of asphalt pavement based on grey relational analysis and support vector machine regression[J]. Journal of Chongqing University(Natural Science Edition), 2019, 42(4): 72-81
Authors:ZHAO Jing  WANG Xuancang  DING Longting  FANG Naren  LI Shanqiang
Affiliation:Highway College, Chang''an University, Xi''an 710064, P. R. China,Highway College, Chang''an University, Xi''an 710064, P. R. China,Highway College, Chang''an University, Xi''an 710064, P. R. China,Highway College, Chang''an University, Xi''an 710064, P. R. China and Guangdong Hualu Transportation Technology Co. Ltd., Guangzhou 51042, P. R. China
Abstract:Asphalt pavement performance prediction is complex and nonlinear when it involves multi-factor. In order to overcome the defects existing in traditional prediction models, a long-period and multi-factor prediction model with high precision needs to be established, on which the dimension of each factor is reduced by grey relational analysis, and the important relational factors are selected for nonlinear prediction by support vector machine regression. Accordingly the performance prediction model of asphalt pavement based on GRA-SVR was proposed and the measured RDI from Guangyun freeway were collected as an example to validate the proposed model. The results show that GRA-SVR model has better accuracy and maneuverability compared with GM(1,1)and PPI models. It can be used in long-term process and provide model reference for large data maintenance decision-making.
Keywords:asphalt pavement  support vector machine regression  grey relation analysis  performance prediction  pavement maintenance
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号