首页 | 本学科首页   官方微博 | 高级检索  
     

利用记忆梯度法改进的变步长恒模盲均衡算法研究
引用本文:肖瑛,董玉华. 利用记忆梯度法改进的变步长恒模盲均衡算法研究[J]. 大连民族学院学报, 2010, 12(5): 436-439
作者姓名:肖瑛  董玉华
作者单位:大连民族学院,机电信息工程学院,辽宁,大连,116605;大连民族学院,机电信息工程学院,辽宁,大连,116605
基金项目:中央高校基本科研业务费专项资金资助项目 
摘    要:针对传统恒模盲均衡算法收敛速度慢、固定步长条件下收敛速度和收敛精度之间存在矛盾的缺陷,提出了一种利用记忆梯度法改进的变步长恒模盲均衡算法。用记忆梯度算法替代最速梯度下降算法实现对恒模盲均衡中均衡器权值的调整,充分利用当前和前面迭代点的梯度信息,同时利用梯度信息变化率作为学习步长调整因子。新算法有效地提高了算法收敛速度,与共轭梯度法和拟牛顿法等改进算法比较,具有较低的计算复杂度和更好的均衡性能。计算机仿真证明了这一算法的有效性。

关 键 词:盲均衡  记忆梯度  变步长  共轭梯度

On a Variable-step Constant-modulus Blind Equalization Algorithm Modified by Memory Gradient Method
XIAO Ying,DONG Yu-hua. On a Variable-step Constant-modulus Blind Equalization Algorithm Modified by Memory Gradient Method[J]. Journal of Dalian Nationalities University, 2010, 12(5): 436-439
Authors:XIAO Ying  DONG Yu-hua
Affiliation:(College of Electromechanical & Information Engineering,Dalian Nationalities University,Dalian Liaoning 116605,China)
Abstract:The traditional constant modulus blind equalization algrithm has defects including a slow convergence rate and,under a fixed step,conflicts between convergence rate and precision.Against those defects,this paper proposes a variable-step,constant-modulus,blind equalization algorithm modified by a memory gradient method.The equalizer weights are adjusted by the memory gradient method instead of the steepest descent algorithm.The new algorithm makes full use of gradient information on current and previous iteration points,while using gradient information changing rate as the learning step adjustment factor.It increases the convergence rate and,compared with other modified algorithms such as conjugate gradient and quasi-Newton methods,has lower computational complexity and better equalization performance.Computer emulation proved the effectiveness of this algorithm.
Keywords:blind equalization  memory gradient  variable step  conjugate gradient
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号