首页 | 本学科首页   官方微博 | 高级检索  
     

基于鲁棒神经网络的水下机器人运动控制
引用本文:梁霄,李晔,万磊,孙玉山. 基于鲁棒神经网络的水下机器人运动控制[J]. 东南大学学报(自然科学版), 2006, 0(Z1)
作者姓名:梁霄  李晔  万磊  孙玉山
作者单位:哈尔滨工程大学船舶工程学院 哈尔滨工程大学船舶工程学院 哈尔滨
摘    要:
针对水下机器人神经网络控制中系统响应速度慢及对噪声较敏感的问题,依据变结构控制理论,提出了一种基于鲁棒神经网络的水下机器人控制方法E利用指数趋近律,推导出神经网络参数的镇定算法,并采用标准误差反向传播(EBP)算法最小化目标函数,最后在水下综合探测机器人仿真平台上进行了试验研究E试验结果表明,该控制方法对神经网络学习率的改变和外界扰动有很强的鲁棒性,大大降低了机器人机械传动系统的磨损,且能够保证神经网络快速、稳定地学习,从而满足实时性控制的要求,具有较高的理论和实用价值.

关 键 词:水下机器人  运动控制  鲁棒神经网络  变结构控制

Motion control of underwater vehicles based on robust neural network
Liao Xiao Li Ye Wan Lei Sun Yushan. Motion control of underwater vehicles based on robust neural network[J]. Journal of Southeast University(Natural Science Edition), 2006, 0(Z1)
Authors:Liao Xiao Li Ye Wan Lei Sun Yushan
Abstract:
Aiming at low response speed and sensitization to noises in control system of underwater vehicles by adopting neural network,a novel method of control based on the robust neural network is proposed according to the variable structure control theory.The parameter ballasting algorithm of neural network was deduced according to the exponent approach law,and the error back propagation(EBP) algorithm was adopted to minimize the object function.Finally,simulation experiments were carried out on general detection platform of underwater vehicle.Results show that the proposed method has good robustness to external disturbance and changing of learning-ratio.It can greatly reduce the abrasion of the mechanically-driven system,and keep learning of neural network fast and stably.It also meets the requirement of real-time control and has theoretical and practical value.
Keywords:underwater vehicle  motion control  robust neural network  variable structure control
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号