首页 | 本学科首页   官方微博 | 高级检索  
     

丢番图方程a^x+b^y=c^z的正整数解
引用本文:陈进平. 丢番图方程a^x+b^y=c^z的正整数解[J]. 海南大学学报(自然科学版), 2012, 30(4): 309-315
作者姓名:陈进平
作者单位:西华师范大学数学与信息学院,四川南充,637002
基金项目:西华师范大学大学生科技创新基金项目
摘    要:设m为正整数,且a=m^7-21m^5+35m^3-7m,b=7m^6-35m^4+21m^2-1,c=m^2+1.本文同时利用2个代数数的线性型下界估计以及2个有理数方幂之差的p-adie值的下界估计的一些深入结果,证明了对正整数m≥2.4×10^9,丢番图方程a^x+b^y=c^z仅有正整数解(x,y,z)=(2,2,7).

关 键 词:丢番图方程  TERAI猜想  正整数解  对数线性型  p-adic标准值

Positive Integer of Diophantine Equation ax + by =cz
CHEN Jin-ping. Positive Integer of Diophantine Equation ax + by =cz[J]. Natural Science Journal of Hainan University, 2012, 30(4): 309-315
Authors:CHEN Jin-ping
Affiliation:CHEN Jin-ping ( College of Mathematics and Information, China West Normal University, Nanehong 637002, China)
Abstract:In our report, let m ∈n,a =m^7 -21m^5 +35m^3 -7m,b =7m^6 -35m^4 +21m^2 - 1 ,c =m^2 + 1, A deep result of the lower bound for linear forms in two logarithms and the lower bound for the p-adic distance between two powers of rational numbers were used to prove that if m≥2. 4 x 109, the Diophantine equation a^x + b^y = c^z has only one positive integer solution (x,y,z) = (2,2,7).
Keywords:Diophantine equation  Terai conjecture  positive interger solution  linear forms in two logarithms  p-adic standard value
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号