摘 要: | 针对室内环境中复杂的多径效应影响定位精度问题,提出一种基于3维卷积神经网络(3 dimensional convolutional neural network,3DCNN)多径程度划分的自校准指纹定位算法。该算法利用MeanShift方法分析定位区域内每一个采样点的信道状态信息数据分布特性,得到其可代表多径效应程度的簇类数量,结合阈值原则将指纹库划分为2种不同多径程度的子库,从而减少多径程度差异较大的指纹点对后续定位影响利用3DCNN深度学习2类指纹子库。在定位阶段,根据校准算法判断待测数据所属子库,并采用相应的3DCNN模型估计位置。通过仿真实验验证,该方法在保证指纹库构建合理性和高效性的同时,在定位精度方面实现了明显的提升,优于与之对比的相关算法。
|