首页 | 本学科首页   官方微博 | 高级检索  
     

Improved Non-Sieving Quadratic Sieve
引用本文:HUANG Qingfeng LI Zhitang LIN Huaiqing YANG Xiangdong. Improved Non-Sieving Quadratic Sieve[J]. 武汉大学学报:自然科学英文版, 2007, 12(1): 67-70. DOI: 10.1007/s11859-006-0190-2
作者姓名:HUANG Qingfeng LI Zhitang LIN Huaiqing YANG Xiangdong
作者单位:[1]Network and Computer Center, Huazhong Universityof Science and Technology, Wuhan 430074,Hubei, China; [2]College of Electronic Engineering, Naval Universityof Engineering, Wuhan 430033, Hubei, China
基金项目:Foundation item: Supported by the National Natural Science Foundation of China (60573120)
摘    要:In this paper, we give about prime numbers and Blum two theorems and one guess integers.We prove the two theorems about Blum integers.Combining the guess with the primitive non-sieving quadratic sieve,we proposed a improved non-sieving quadratic sieve(INQS).In INQS,we not only reduce the times of squares and modulo n, but also imply another important conclusion,that is,we don't need to find the greatest common divisor of two integers as we do in PNQS.By some examples,we compare it with the primitive non-sieving quadratic sieve(PNQS). It's faster to factor a integer by using improved non-sieving quadratic sieve than the primitive one.

关 键 词:计算机 安全保密 二次方程 PNQS
文章编号:1007-1202(2007)01-0067-04
收稿时间:2006-05-09

Improved non-sieving quadratic sieve
Huang Qingfeng,Li Zhitang,Lin Huaiqing,Yang Xiangdong. Improved non-sieving quadratic sieve[J]. Wuhan University Journal of Natural Sciences, 2007, 12(1): 67-70. DOI: 10.1007/s11859-006-0190-2
Authors:Huang Qingfeng  Li Zhitang  Lin Huaiqing  Yang Xiangdong
Affiliation:(1) Network and Computer Center, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China;(2) College of Electronic Engineering, Naval University of Engineering, Wuhan, 430033, Hubei, China
Abstract:In this paper, we give two theorems and one guess about prime numbers and Blum integers.We prove the two theorems about Blum integers.Combining the guess with the primitive non-sieving quadratic sieve, we proposed a improved non-sieving quadratic sieve(INQS).In INQS, we not only reduce the times of squares and modulo n, but also imply another important conclusion,that is,we don’t need to find the greatest common divisor of two integers as we do in PNQS.By some examples, we compare it with the primitive non-sieving quadratic sieve(PNQS). It’s faster to factor a integer by using improved non-sieving quadratic sieve than the primitive one. Biography: HUANG Qingfeng (1973–), female, Ph.D. candidate, research direction: network security.
Keywords:primitive non-sieving quardratic sieve   INQS   ecllipse curve
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号