首页 | 本学科首页   官方微博 | 高级检索  
     

李雅普诺夫方程的新解法
引用本文:塞拉斯,宋扬,孙华飞. 李雅普诺夫方程的新解法[J]. 北京理工大学学报, 2020, 40(3): 347-350. DOI: 10.15918/j.tbit1001-0645.2018.356
作者姓名:塞拉斯  宋扬  孙华飞
作者单位:北京理工大学 数学与统计学院, 北京 100081
基金项目:北京市科委创新项目(Z161100005016043)
摘    要:利用对数欧氏度量的方法给出李雅普诺夫方程的新解法.介绍了李雅普诺夫方程的由来,介绍对称正定矩阵流形的黎曼度量以及对数欧氏度量下的距离函数,给出求解李雅普诺夫方程的迭代公式,并给出模拟仿真的结果.

关 键 词:李雅普诺夫方程  对数欧氏度量  对称正定矩阵流形  黎曼度量
收稿时间:2018-06-27

A New Approach to the Solution of Lyapunov Equation
MIRAU Silas,SONG Yang and SUN Hua-fei. A New Approach to the Solution of Lyapunov Equation[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2020, 40(3): 347-350. DOI: 10.15918/j.tbit1001-0645.2018.356
Authors:MIRAU Silas  SONG Yang  SUN Hua-fei
Affiliation:School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
Abstract:A new approach was proposed based on the Log-Euclidean metric to solve the Lyapunov equation. First, the origin of Lyapunov equation was introduced. Then the Riemannian metrics on a manifold of symmetric positive definite matrices and the geodesic distance function under Log-Euclidean metric were presented. Last, the iterative formula for the solution to Lyapunov equation was obtained, and some simulation results were shown.
Keywords:Lyapunov equation  Log-Euclidean metric  symmetric positive definite manifold  Riemannian metric
本文献已被 CNKI 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号